Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation

نویسندگان

  • Jean-David Benamou
  • Adam Oberman
  • Brittany Froese
چکیده

This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation. The boundary conditions correspond to the optimal transportation of measures supported on two domains, where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit and non-local. These boundary conditions are reformulated as a nonlinear Hamilton-Jacobi PDE on the boundary. This formulation allows us to extend the convergent, wide stencil Monge-Ampère solvers proposed by Froese and Oberman to this problem. Several non-trivial computational examples demonstrate that the method is robust and fast. Key-words: Optimal Transportation, Monge-Ampère Equation ∗ INRIA, Domaine de Voluceau Rocquencourt, 78153 Rocquencourt, France † Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada ‡ Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada ha l-0 07 03 67 7, v er si on 1 4 Ju n 20 12 Résolution numérique du deuxième problème aux limites pour l’équation de Monge Ampère Résumé : Cet article présente une méthode de résolution numérique pour une équation de Monge Ampère elliptique non-linéaire. Les conditions aux limites particulières correspondent au problème du transport optimal entre deux mesures dont au moins un des supports est convexe. La difficulté posée tient au caractère implicite et non local de ces conditions aux limites. Nous proposons de les reformuler comme une équation de Hamilton-Jacobi sur le bord. Ceci permet d’étendre les schémas de type ”wide-stencil” et résultats de convergence associés de Froese et Oberman à ce problème. Plusieurs cas tests, certains non triviaux, démontrent la rapidité et robustesse de la méthode. Mots-clés : Transport Optimal, Equation de Monge-Ampère ha l-0 07 03 67 7, v er si on 1 4 Ju n 20 12 NUMERICAL SOLUTION OF THE SECOND BOUNDARY VALUE PROBLEM FOR THE ELLIPTIC MONGE-AMPÈRE EQUATION J.-D. BENAMOU(INRIA-ROCQUENCOURT, FRANCE), B. D. FROESE (SFU, CANADA), AND A. OBERMAN (SFU, CANADA) Abstract. This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation, with boundary conditions corresponding to the optimal transportation of measures supported on two domains, X and Y , where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit. These boundary conditions are reformulated as a nonlinear HamiltonJacobi PDE on the boundary. This formulation allows us to extend the convergent, wide stencil Monge-Ampère solvers proposed in [FO11a] to this problem. Several non-trivial computational examples demonstrate that the method is robust and fast. This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation, with boundary conditions corresponding to the optimal transportation of measures supported on two domains, X and Y , where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit. These boundary conditions are reformulated as a nonlinear HamiltonJacobi PDE on the boundary. This formulation allows us to extend the convergent, wide stencil Monge-Ampère solvers proposed in [FO11a] to this problem. Several non-trivial computational examples demonstrate that the method is robust and fast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

Standard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Aleksandrov Solutions

We prove a convergence result for a natural discretization of the Dirichlet problem of the elliptic Monge-Ampère equation using finite dimensional spaces of piecewise polynomial C functions. Discretizations of the type considered in this paper have been previously analyzed in the case the equation has a smooth solution and numerous numerical evidence of convergence were given in the case of non...

متن کامل

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...

متن کامل

Boundary regularity for the Monge-Ampère and affine maximal surface equations

In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012